Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage.

نویسندگان

  • Laury Chaerle
  • Dik Hagenbeek
  • Erik De Bruyne
  • Roland Valcke
  • Dominique Van Der Straeten
چکیده

Different biotic stresses yield specific symptoms, owing to their distinct influence on a plant's physiological status. To monitor early changes in a plant's physiological status upon pathogen attack, chlorophyll fluorescence imaging (Chl-FI) and thermography, which respectively visualize photosynthetic efficiency and transpiration, were carried out in parallel for two fundamentally different plant-pathogen interactions. These non-destructive imaging techniques were able to visualize infections at an early stage, before damage appeared. Under growth-room conditions, a robotized set-up captured time series of visual, thermal and chlorophyll fluorescence images from infected regions on attached leaves. As a first symptom of the plant-virus interaction between resistant tobacco and tobacco mosaic virus (TMV), thermal imaging detected a local rise in temperature while Chl-FI monitored a co-localized increase in fluorescence intensity. Chl-FI also revealed pre-symptomatic high-intensity spots for the plant-fungus system sugar beet-Cercospora beticola. Concomitantly, spots of lower temperature were monitored with thermography, in marked contrast with our observations on TMV-infection in tobacco. Knowledge of disease signatures for different plant-pathogen interactions could allow early identification of emerging biotic stresses in crops, facilitating the containment of disease outbreaks. Presymptomatic monitoring clearly opens perspectives for quantitative screening for disease resistance, either on excised leaf pieces or attached leaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging.

Thermal and chlorophyll fluorescence imaging are powerful tools for the study of spatial and temporal heterogeneity of leaf transpiration and photosynthetic performance. The relative advantages and disadvantages of these techniques are discussed. When combined, they can highlight pre-symptomatic responses not yet apparent in visual spectrum images and provide specific signatures for diagnosis o...

متن کامل

Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum

The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized...

متن کامل

Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana

Many studies have shown that exogenous abscisic acid (ABA) promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas) that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of p...

متن کامل

Diagnosis of Invisible Photosynthetic Injury Caused by a Herbicide (Basta) with Chlorophyll Fluorescence Imaging System

Chlorophyll fluorescence imaging is a powerful tool in obtaining physiological information on plant leaf in non-destructive and non-invasive ways. Effects of Basta, one of the most popular commercially available foliar application-type herbicides, on in situ kidney bean leaf was analyzed with a developed chlorophyll fluorescence imaging system. Immediately after the Basta treatment, CO2 assimil...

متن کامل

An investigation on the possibility of use of chlorophyll fluorescence to study the stomatal behaviour in plants under drought stress

Stomata play a key role in the control of plant water relations and photosynthesis. A rapid non-destructive method to study the stomatal behaviour in aerial parts of plants is important for researchers in plant sciences and agricultural fields. Stomata close in response to drought stress. Stomatal closure causes lower availability of CO2 inside the leaf and thus a decrease in the rate of carbox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 45 7  شماره 

صفحات  -

تاریخ انتشار 2004